796 research outputs found

    Evaluation of Compton scattering sequence reconstruction algorithms for a portable position sensitive radioactivity detector based on pixelated Cd(Zn)Te crystals

    Full text link
    We present extensive simulation studies on the performance of algorithms for the Compton sequence reconstruction used for the development of a portable spectroscopic instrument (COCAE), with the capability to localize and identify radioactive sources, by exploiting the Compton scattering imaging. Various Compton Sequence reconstruction algorithms have been compared using a large number of simulated events. These algorithms are based on Compton kinematics, as well as on statistical test criteria that exploit the redundant information of events having two or more photon interactions in the active detector's volume. The efficiency of the best performing technique is estimated for a wide range of incident gamma-ray photons emitted from point-like gamma sources.Comment: 16 pages, 17 figure

    Performance of the Micromegas detector in the CAST experiment

    Full text link
    The gaseous Micromegas detector designed for the CERN Axion search experiment CAST, operated smoothly during Phase-I, which included the 2003 and 2004 running periods. It exhibited linear response in the energy range of interest (1-10keV), good spatial sensitivity and energy resolution (15-19% FWHM at 5.9keV)as well as remarkable stability. The detector's upgrade for the 2004 run, supported by the development of advanced offline analysis tools, improved the background rejection capability, leading to an average rate 5x10^-5 counts/sec/cm^2/keV with 94% cut efficiency. Also, the origin of the detected background was studied with a Monte Carlo simulation, using the GEANT4 package.Comment: Prepared for PSD7: The Seventh International Conference on Position Sensitive Detectors, Liverpool, United Kingdom, 12-16 Sep. 200

    Searches for Scalar Top and Scalar Bottom Quarks at LEP2

    Get PDF
    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb^-1 taken at sqrt{s} = 161, 170, and 172~GeV and 5.7 pb^-1 taken at sqrt{s} = 130 and 136~GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels stop --> c chi, stop --> b l snu, and sbottom --> b chi. For the channel stop --> c chi a limit of 67 GeV/c^2 has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the stop and the chi of at least 10 GeV/c^2. For the channel stop --> b l snu the mixing-angle independent scalar top limit is 70 GeV/c^2, assuming a mass difference between the stop and the snu of at least 10 GeV/c^2. For the channel sbottom --> b chi, a limit of 73 GeV/c^2 has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. This limit is valid if the mass difference between the sbottom and the chi is at least 10 GeV/c^2

    Simulated Performance Of Algorithms For The Localization Of Radioactive Sources From A Position Sensitive Radiation Detecting System (COCAE)

    Full text link
    Simulation studies are presented regarding the performance of algorithms that localize point-like radioactive sources detected by a position sensitive portable radiation instrument (COCAE). The source direction is estimated by using the List Mode Maximum Likelihood Expectation Maximization (LM-ML-EM) imaging algorithm. Furthermore, the source-to-detector distance is evaluated by three different algorithms based on the photo-peak count information of each detecting layer, on the quality of the reconstructed source image as well as on the triangulation method. These algorithms have been tested on a large number of simulated photons in a wide energy range (from 200keV up to 2MeV) emitted by point-like radioactive sources located at different orientation and source-to-detector distances.Comment: 8 pages, 7 figures, 11th International Conference on Applications of Nuclear Techniques, Crete, Greece, June 12-18, 201

    A low background Micromegas detector for the CAST experiment

    Full text link
    A low background Micromegas detector has been operating on the CAST experiment at CERN for the search of solar axions during the first phase of the experiment (2002-2004). The detector operated efficiently and achieved a very low level of background rejection (5×10−55\times 10^{-5} counts keV−1^{-1}cm−2^{-2}s−1^{-1}) thanks to its good spatial and energy resolution as well as the low radioactivity materials used in the construction of the detector. For the second phase of the experiment (2005-2007), the detector will be upgraded by adding a shielding and including focusing optics. These improvements should allow for a background rejection better than two orders of magnitude.Comment: 6 pages, 3 figures To appear on the proceedings of the 9th ICATPP Conference on AStroparticle, Particle, Space Physics, Detectors and Medical Physics Application

    The Micromegas detector of the CAST experiment

    Get PDF
    A low background Micromegas detector has been operating in the CAST experiment at CERN for the search of solar axions during the first phase of the experiment (2002-2004). The detector, made out of low radioactivity materials, operated efficiently and achieved a very low level of background rejection (5 x 10^-5 counts/keV/cm^2/s) without shielding.Comment: 13 pages, 12 figures and images, submitted to New Journal o
    • 

    corecore